Existence and non-existence of minimizers for Poincaré–Sobolev inequalities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and non existence results for minimizers of the Ginzburg-Landau energy with prescribed degrees

Let D = Ω\ω ⊂ R be a smooth annular type domain. We consider the simplified Ginzburg-Landau energy Eε(u) = 12 ∫

متن کامل

Existence of Energy Minimizers for Magnetostrictive Materials

The existence of a deformation and magnetization minimizing the magnetostrictive free energy is given. Mathematical challenges are presented by a free energy that includes elastic contributions defined in the reference configuration and magnetic contributions defined in the spatial frame. The one-to-one a.e. and orientation-preserving property of the deformation is demonstrated, and the satisfa...

متن کامل

Existence of Minimizers of Nonlocal Interaction Energies

We investigate nonlocal-interaction energies on the space of probability measures. We establish sharp conditions for the existence of minimizers for a broad class of nonlocalinteraction energies. The condition is closely related to the notion of H-stability of pairwise interaction potentials in statistical mechanics. Our approach uses the direct method of calculus of variations.

متن کامل

The Existence of Finite Element Minimizers

We present a general theorem on the existence of nite element minimizers for the approximation of variational problems of multiple inte-grals. Our theorem applies to variational problems for which a minimum does not exist in innnite-dimensional spaces of functions. Such problems occur in models for microstructure in martensitic and ferromagnetic crystals .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2019

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-019-1640-y